doi: 10.17586/2226-1494-2023-23-5-1021-1029


Sedentary behavior health outcomes and identifying the uncertain behavior patterns in adult 

D. Shanmugam, J. Dhilipan


Read the full article  ';
Article in English

For citation:
Shanmugam D.B., Dhilipan J. Sedentary behavior health outcomes and identifying the uncertain behavior patterns in adult. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 5, pp. 1021–1029. doi: 10.17586/2226-1494-2023-23-5-1021-1029


Abstract
Uncertain sedentary behavior has evolved as a new health concern in recent periods. Being inactive for long periods is a significant risk factor among all the adult age groups, especially over-reliance on vehicles for mobility. Sensors are making it easier to monitor seating habits throughout the active period. However, experts are divided on the most appropriate objective metrics for capturing the cumulative information of sedentary time throughout the day. Due to discrepancies in measuring methods, data processing techniques, and the absence of fundamental outcome indicators like cumulative sedentary period, evaluating the several research studies sedentary patterns was unrealistic. In this research study, a novel design was suggested with adaptive computations, namely, fleeting granularity, to differentiate instances of daily human activities. Multivariate transitory information is acquired from sophisticated units (essential cells). Our proposed scalable algorithms can identify Frequent Behavior Patterns (FBPs) with a timeframe estimate by employing collected widespread multivariate data (fleeting granularity). It has been evidenced that the applicability of the example by differentiating proof computations on two certifiable datasets. The assessment of the relationships, accuracy, and applicability of sedentary factors is the primary subject of this research.

Keywords: uncertainty, sedentary behavior, time-series, reclining, multi-variate, accuracy, frequent behavior

References
  1. Biswas A., Oh P.I., Faulkner G.E., Bajaj R.R., Silver M.A., Mitchell M.S., Alter D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults. Annals of Internal Medicine, 2015, vol. 162, no. 2, pp. 123–132. https://doi.org/10.7326/m14-1651
  2. O’Donoghue G., Perchoux C., Mensah K., Lakerveld J., van der Ploeg H., Bernaards C., Chastin S.F.M., Simon C., O’Gorman D., Nazare J.-A. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: a socio-ecological approach. BMC Public Health, 2016, vol. 16, no. 1, pp. 163. https://doi.org/10.1186/s12889-016-2841-3
  3. Young D.R., Hivert M.-F., Alhassan S., Camhi S.M., Ferguson J.F., Katzmarzyk P.T., Lewis C.E., Owen N., Perry C.K., Siddique J., Yong C.M. Sedentary behavior and cardiovascular morbidity and mortality: A science advisory from the American Heart Association. Circulation, 2016, vol. 134, no. 13, pp. e262–e279. https://doi.org/10.1161/cir.0000000000000440
  4. Kumar V.V., Raghunath K.M.K., Muthukumaran V., Joseph R.B., Beschi I.S., Uday A.K. Aspect based sentiment analysis and smart classification in uncertain feedback pool. International Journal of System Assurance Engineering and Management, 2022, vol. 13, no. S1, pp. 252–262. https://doi.org/10.1007/s13198-021-01379-2
  5. Thorp A.A., Healy G.N., Owen N., Salmon J., Ball K., Shaw J.E., Zimmet P.Z., Dunstan D.W. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian diabetes, obesity and lifestyle (AusDiab) study 2004-2005. Diabetes Care, 2010, vol. 33, no. 2, pp. 327–334. https://doi.org/10.2337/dc09-0493
  6. Warren T.Y., Barry V., Hooker S.P., Sui X., Church T.S., Blair S.N. Sedentary behaviors increase risk of cardiovascular disease mortality in men. Medicine & Science in Sports & Exercise, 2010, vol. 42, no. 5, pp. 879–885. https://doi.org/10.1249/mss.0b013e3181c3aa7e
  7. Owen N., Sugiyama T., Eakin E.E., Gardiner P.A., Tremblay M.S., Sallis J.F. Adults’ sedentary behavior. American Journal of Preventive Medicine, 2011, vol. 41, no. 2, pp. 189–196. https://doi.org/10.1016/j.amepre.2011.05.013
  8. Deliens T., Deforche B., De Bourdeaudhuij I., Clarys P. Determinants of physical activity and sedentary behaviour in university students: a qualitative study using focus group discussions. BMC Public Health, 2015, vol. 15, no. 1, pp. 201. https://doi.org/10.1186/s12889-015-1553-4
  9. Migueles J.H., Aadland E., Andersen L.B., Brønd J.C., Chastin S.F., Hansen B.H., Konstabel K., Kvalheim O.M., McGregor D.E., Rowlands A.V., Sabia S., van Hees V.T., Walmsley R., Ortega F.B. GRANADA consensus on analytical approaches to assess associations with accelerometer-determined physical behaviours (physical activity, sedentary behaviour and sleep) in epidemiological studies. British Journal of Sports Medicine, 2022, vol. 56, no. 7, pp. 376–384. https://doi.org/10.1136/bjsports-2020-103604
  10. Crouter S.E., Flynn J.I., Bassett D.R. Estimating physical activity in youth using a wrist accelerometer. Medicine & Science in Sports & Exercise, 2015, vol. 47, no. 5, pp. 944–951. https://doi.org/10.1249/mss.0000000000000502
  11. Rawassizadeh R., Momeni E., Dobbins C., Gharibshah J., Pazzani M. Scalable daily human behavioral pattern mining from multivariate temporal data. IEEE Transactions on Knowledge and Data Engineering, 2016, vol. 28, no. 11, pp. 3098–3112. https://doi.org/10.1109/tkde.2016.2592527
  12. Nath S. ACE: Exploiting correlation for energy-efficient and continuous context sensing. IEEE Transactions on Mobile Computing, 2013, vol. 12, no. 8, pp. 1472–1486. https://doi.org/10.1109/tmc.2013.12
  13. Wang X., Zhang Y. Multi-step-ahead time series prediction method with stacking LSTM neural network. Proc. of the 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), 2020, pp. 51–55. https://doi.org/10.1109/icaibd49809.2020.9137492
  14. Banaee H., Ahmed M., Loutfi A. Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors, 2013, vol. 13, no. 12, pp. 17472–17500. https://doi.org/10.3390/s131217472
  15. He Q., Agu E.O. A rhythm analysis-based model to predict sedentary behaviors. Proc. of the 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2017, pp. 383–391. https://doi.org/10.1109/chase.2017.122
  16. Rehman M., Liew C., Wah T., Shuja J., Daghighi B. Mining personal data using smartphones and wearable devices: A survey. Sensors, 2015, vol. 15, no. 2, pp. 4430–4469. https://doi.org/10.3390/s150204430
  17. Gyllensten I.C., Bonomi A. Identifying types of physical activity with a single accelerometer: Evaluating laboratory-trained algorithms in daily life. IEEE Transactions on Biomedical Engineering, 2011, vol. 58, no. 9, pp. 2656–2663. https://doi.org/10.1109/TBME.2011.2160723
  18. Chen Z., Wu M., Wu J., Ding J., Zeng Z., Surmacz K., Li X. A deep learning approach for sleep-wake detection from HRV and accelerometer data. Proc. of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2019. https://doi.org/10.1109/bhi.2019.8834502
  19. Li X., Zhang Y., Jiang F., Zhao H. A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy. Chronobiology International, 2020, vol. 17, no. 7, pp. 1002–1015. https://doi.org/10.1080/07420528.2020.1754848
  20. Dingli A., Fournier K.S. Financial time series forecasting – a deep learning approach. International Journal of Machine Learning and Computing, 2017, vol. 7, no. 5, pp. 118–122. https://doi.org/10.18178/ijmlc.2017.7.5.632


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика